Monoclinic
$P 2_{1} / n$
$a=11.667$ (3) \AA
$b=7.292(2) \AA$
$c=15.275(3) \AA$
$\beta=97.02(2)^{\circ}$
$V=1289.8(5) \AA^{3}$
$Z=4$
$D_{x}=1.299 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC- $6 S$ diffractom-	$R_{\text {int }}=0.046$
\quad eter	$\theta_{\text {max }}=25.0^{\circ}$
$\omega / 2 \theta$ scans	$h=0 \rightarrow 13$
Absorption correction: none	$k=0 \rightarrow 8$
2395 measured reflections	$l=-18 \rightarrow 18$
2279 independent reflections	3 standard reflections
1662 reflections with	every 200 reflections
$I>2 \sigma(I)$	intensity decay: none

Refinement

Refinement on F^{2}
$R(F)=0.037$
$w R\left(F^{2}\right)=0.107$
$S=1.171$
2273 reflections
165 parameters
H atoms riding
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.05 P)^{2}\right.$
$+0.65 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
H atoms were included at geometrically idealized positions, with a C-H distance of $0.95 \AA$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1994). Program(s) used to solve structure: SAPI91 (Fan, 1991). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: TEXSAN. Software used to prepare material for publication: SHELXL93.

The authors thank the Natural Sciences and Engineering Council (Canada) for providing the diffractometer through an equipment grant to the University of Calgary.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1408). Services for accessing these data are described at the back of the journal.

References

Ackland, M. J., Hanson, J. R., Hitchcock, P. B. \& Ratcliffe, A. H. (1985). J. Chem. Soc. Perkin Trans. pp. 843-847.

Caufield, C. E. (1995). Curr. Pharmaceut. Des. pp. 145-160.
Fan, H.-F. (1991). SAPI91. Structure Analysis Program with Intelligent Control. Rigaku Corporation. Tokyo, Japan.
Fedeli, W. \& Dunitz, J. D. (1968). Helv. Chim. Acta, 51. 445-458.
Grant, P. K., Hanton, L. R., Lynch, G. P., Simpson, J. \& Slim, G. C. (1991). Aust. J. Chem. 44, 897-906.
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.222 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.235$ e \AA^{-3}
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Cell parameters from 25 reflections
$\theta=18-25^{\circ}$
$\mu=0.094 \mathrm{~mm}^{-1}$
$T=200(1) \mathrm{K}$
Block, cut from a large needle
$0.45 \times 0.38 \times 0.30 \mathrm{~mm}$
Colorless

$$
\begin{aligned}
& R_{\text {int }}=0.046 \\
& \theta_{\text {max }}=25.0^{\circ} \\
& h=0 \rightarrow 13 \\
& k=0 \rightarrow 8 \\
& l=-18 \rightarrow 18 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 200 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

Johnson, C. K. (1976). ORTEPII. Report ORNL-5I38. Oak Ridge National Laboratory, Tennessec, USA.
Mabelis, R. P., Ratcliffe, A. H., Ackland. M. J.. Hanson, J. R. \& Hitchcock, P. B. (1981). J. Chem. Soc. Chem. Commun. pp. 10061007.

Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381. USA.
Molecular Structure Corporation (1994). TEXSAN. Single Crystal Structure Analysis Sofinare. MSC. 3200 Research Forest Drive, The Woodlands. TX 77381, USA.
Orpen, A. G.. Brammer. L., Allen, F. H., Kennard. O.. Watson, D. G. \& Taylor, R. (1994). Structure Correlation. Vol. 2, edited by H.-B. Bürgi \& J. D. Dunitz, pp. 751-858. New York: VCH.
Parvez. M., Sultana, N., Sarfaraz, T. B. \& Husain. S. A. (1998). Acta Cryst. C54. In the press.
Rissanen, K. \& Haufe, G. (1988). Acta Cnst. C44, 1803-1805.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Götuingen. Germany.
Wiberg, K. W., Waldron, R. F., Schulte, G. \& Saunders. M. (1991). J. Am. Chem. Soc. 113, 971-977.

Acta Cryst. (1998). C54, 790-792

14-O-Benzoyl-8-ethoxybikhaconine and 14-O-Benzoyl-8-methoxybikhaconine

Masood Parvez, ${ }^{a}$ Waseem Gul ${ }^{a}$ and Saeed Anwar ${ }^{b}$
a Department of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4, and ${ }^{b}$ Department of Chemistry; Gomal University, Dera Ismail Khan, NWFP, Pakistan. E-mail: parvez@acs.ucalgart.ca

(Received 11 November 1997: accepted 6 January 1998)

Abstract

The molecular structures of two new C_{19} norditerpenoid alkaloids, 14-O-benzoyl-8-methoxybikhaconine $[(1 \alpha, 6 \alpha, 14 \alpha, 16 \beta)$-20-ethyl-13-hydroxy-1,6,8,16-tetramethoxy-4-methoxymethylaconitan-14-yl benzoate, $\mathrm{C}_{33} \mathrm{H}_{47} \mathrm{NO}_{8}$, (1)] and 14-O-benzoyl-8-ethoxybikhaconine [($1 \alpha, 6 \alpha, 14 \alpha, 16 \beta)$-8-ethoxy-20-ethyl-13-hydroxy-1,6,16-trimethoxy-4-methoxymethylaconitan-14-yl benzoate, $\mathrm{C}_{34} \mathrm{H}_{49} \mathrm{NO}_{8}$, (2)], isolated for the first time from the roots of Aconitum chasmanthum Stapf ex Holmes of Pakistani origin, have been determined. The two alkaloids differ by one CH_{2} moiety in a side chain (8-methoxy versus 8-ethoxy), co-crystallize in a 65 (2):35 (2) ratio, i.e. $0.65 \mathrm{C}_{33} \mathrm{H}_{47} \mathrm{NO}_{8} \cdot 0.35 \mathrm{C}_{34} \mathrm{H}_{49} \mathrm{NO}_{8}$, and are inseparable by thin-layer and column chromatography. The conformations of the rings in the two alkaloids are: A and E, chairs; D, half-chair; C and F, envelopes; and B, boat. The molecular dimensions are normal; the mean bond distances are $\mathrm{C}_{s p}:-\mathrm{N} 1.463(6)$, $\mathrm{C}_{s p^{3}}-\mathrm{C}_{s p^{3}} 1.54(2), \mathrm{C}_{s p^{3}}-\mathrm{O} 1.41(2), \mathrm{C}_{s p^{2}}-\mathrm{O} 1.342(3)$ and $\mathrm{C}=\mathrm{O} 1.204(4) \mathrm{A}$. There is a short intramolecular
hydrogen bond with $\mathrm{O} \cdots \mathrm{O}$ and $\mathrm{H} \cdots \mathrm{O}$ distances of 2.556 (3) and $2.01 \AA$, respectively.

Comment

As a continuation of our studies on the C_{19} norditerpenoid alkaloids from the roots of Aconitum chasmanthum Stapf ex Holmes of Pakistani origin (Parvez, Gul \& Anwar, 1998; Parvez, Gul, Anwar et al., 1998), we have isolated the title compounds as a crystalline mixture which could not be separated by chromatographic techniques, although from NMR spectral data, it was evident that the sample was composed of two distinct compounds, namely, 14-O-benzoyl-8-methoxybikhaconine, (1), and 14-O-benzoyl-8-ethoxybikhaconine, (2).

(1) $R=\mathrm{CH}_{3}(65 \%)$
(2) $R=\mathrm{C}_{2} \mathrm{H}_{5}(35 \%)$

The crystal structure contains discrete molecules of (1) and (2) occupying the same site in the crystal; an ORTEPII (Johnson, 1976) drawing of (2) is given in Fig. 1. The ethoxy substituent at C8 showed only partial occupancy of C 24 , with (2) being a 35% fraction of the crystal structure and the major portion (65%) being alkaloid (1). The absolute structures could not be determined in this analysis. The absolute configuration chosen is the same as that reported for chasmanine $14-\alpha$-benzoate hydrochloride (De Camp \& Pelletier, 1977). The molecular dimensions are within expected values for the corresponding bond lengths and angles;

Fig. 1. ORTEPII (Johnson, 1976) drawing of (2) with the atomic numbering scheme. Displacement ellipsoids are plotted at the 30% probability level and H atoms have been assigned arbitrary radii. The C8 atom in alkaloid (1) has a methoxy substituent instead of the ethoxy group shown above.
mean bond distances are $\mathrm{C}_{s p^{3}}-\mathrm{N} 1.463$ (6), $\mathrm{C}_{s p^{3}}-\mathrm{C}_{s p^{3}}$ 1.54 (2), C-C $\mathrm{C}_{\text {aromatic }} 1.372$ (19) and $\mathrm{C}_{\mathrm{sp}^{3}}-\mathrm{O} 1.41$ (2) A , while the $\mathrm{C}_{s p^{2}}-\mathrm{C}_{s p^{2}}, \mathrm{C}_{s p^{2}}-\mathrm{O}$ and $\mathrm{C}=\mathrm{O}$ distances are 1.490 (4), 1.342 (3) and 1.204 (4) \AA, respectively.

The six-membered rings $A(\mathrm{C} 1-\mathrm{C} 5, \mathrm{C} 11)$ and $E(\mathrm{C} 4$, $\mathrm{C} 5, \mathrm{C} 11, \mathrm{C} 17, \mathrm{~N} 1, \mathrm{C} 19$) adopt chair conformations. Ring A is slightly flattened at C 1 due to the methoxy substituent attached to Cl , as observed in the structures of chasmaconitine (Parvez, Gul, Anwar et al., 1998), chasmanthinine (Parvez, Gul \& Anwar, 1998), a chasmanine intermediate (Przybylska \& Ahmed, 1980) and aconitine (Codding, 1982). Ring E is also slightly flattened at C19 due to the presence of an ethyl-substituted N atom in the ring. The six-membered ring $D(\mathrm{C} 8$, C9, C13-C16) has a half-chair conformation, with atom C14 0.917 (3) \AA out of the plane of the remaining ring atoms. The seven-membered ring B (C5-C11) adopts a boat conformation, and five-membered rings C (C9, $\mathrm{C} 10, \mathrm{C} 12-\mathrm{C} 14)$ and $F(\mathrm{C} 5-\mathrm{C} 7, \mathrm{C} 11, \mathrm{C} 17)$ display $\mathrm{C} 14-$ and C17-envelope conformations, respectively. The C14 atom of ring C is 0.718 (3) \AA out of the plane of the remaining four atoms which are essentially planar [maximum deviation 0.042 (1) \AA]. Atom C 17 of ring F is 0.730 (3) \AA out of the plane formed by the remainder of the atoms. The benzoate moiety attached to C 14 is almost planar, with atom O7 lying 0.191 (5) \AA above and atom O 80.138 (5) \AA below the plane composed of atoms C26-C32.

There is an intramolecular $\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O} 6$ hydrogen bond [O5 . O6 2.556 (3), H5 . O6 $2.01 \AA$ and O5H5 . O6 114°]; similar hydrogen bonds have been reported in related alkaloids, e.g. chasmaconitine (Parvez, Gul, Anwar et al., 1998) and chasmanthinine (Parvez, Gul \& Anwar, 1998). There are no intermolecular interactions between adjacent molecules other than normal van der Waals contacts.

Experimental

The title compounds, (1) and (2), were isolated from the roots of A. chasmanthum according to Parvez, Gul, Anwar et al. (1998) and crystals of X-ray quality were grown from methanol at room temperature by slow evaporation.

Crystal data

$0.65 \mathrm{C}_{33} \mathrm{H}_{47} \mathrm{NO}_{8} .0 .35 \mathrm{C}_{34} \mathrm{H}_{49}-$

$$
\mathrm{NO}_{8}
$$

$M_{r}=590.63$
Monoclinic
$P 21$
$a=9.938$ (4) \AA
$b=11.876$ (5) \AA
$c=13.611$ (5) \AA
$\beta=91.960(10)^{\circ}$
$V=1605.4(11) \AA^{3}$
$Z=2$
$D_{x}=1.222 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54178 \AA$
Cell parameters from 25 reflections
$\theta=20-30^{\circ}$
$\mu=0.702 \mathrm{~mm}^{-1}$
$T=293$ (1) K
Prism
$0.40 \times 0.37 \times 0.28 \mathrm{~mm}$ Colorless

Data collection
Enraf-Nonius CA
$\omega / 2 \theta$ scans
Absorption correction: none
6403 measured reflections
5766 independent reflections
(including Friedel pairs)
5468 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R(F)=0.062$
$w R\left(F^{2}\right)=0.161$
$S=0.990$
5745 reflections
391 parameters
H atoms riding
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.136 P)^{2}\right.$ $+0.142 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=68.0^{\circ}$
$h=0 \rightarrow 11$
$k=-14 \rightarrow 14$
$l=-16 \rightarrow 16$
3 standard reflections every 200 reflections intensity decay: none
$(\Delta / \sigma)_{\text {max }}=0.005$
$\Delta \rho_{\text {max }}=0.284 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.270 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)
Absolute structure: Flack (1983)

Flack parameter $=0.0(2)$

The methyl C24 atom of the ethoxy group attached to C8 of (2) had only partial site occupancy which refined to a value of 0.35 (2). The H atoms were included at geometrically idealized positions, with $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ distances of $0.95 \AA$.
Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1994). Program(s) used to solve structure: SAPI91 (Fan, 1991). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: TEXSAN. Software used to prepare material for publication: SHELXL93.

The authors thank Professor M. H. Benn for providing laboratory space, supervision and financial assistance (to WG), Syed Iftikhar Hussain Shah (Taxonomist, Faculty of Pharmacy, Gomal University, Pakistan) for help in plant collection and the University of Calgary for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1415). Services for accessing these data are described at the back of the journal.

References

Codding, P. W. (1982). Acta Crust. B38, 2519-2522.
De Camp, W. H. \& Pelletier, S. W. (1977). Acta Crust. B33, 722-727.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fan, H.-F. (1991). SAP191. Structure Analysis Program with Intelligent Control. Rigaku Corporation, Tokyo, Japan.
Flack, H. D. (1983). Actu Cryst. A39, 876-881.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1994). TEXSAN. Single Crystal Structure Analysis Sofiware. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Parvez, M., Gul, W. \& Anwar, S. (1998). Acta Cryst. C54, 125-126.
Parvez, M., Gul, W., Anwar, S., Miana, G. A., Atta-ur-Rahman \& Choudhary, M. I. (1998). Acta Crust. C54, 236-238.

Przybylska, M. \& Ahmed, F. R. (1980). Acta Cřst. B36, 494-497.
Sheldrick. G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Göttingen, Germany.

Acta Cryst. (1998). C54, 792-795

Hydrogen-Bonding Patterns in a Centrosymmetric Structure with $Z^{\prime}=2: \alpha, \alpha^{\prime}, \alpha^{\prime \prime}-$ Trimethyl-1,3,5-benzenetrimethanol

Anthony C. Blackburn and Roger E. Gerkin
Department of Chemistry; The Ohio State Universit; Columbus, Ohio 43210, USA. E-mail: gerkin@chemistry. ohio-state.edu

(Received 6 October 1997; accepted 22 December 1997)

Abstract

The title molecule, $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$, crystallized in the centrosymmetric space group $P 2_{1} / c$ with two molecules in the asymmetric unit. Each molecule donates three, and accepts three, hydrogen bonds. The $\mathrm{O}_{d} \cdots \mathrm{O}_{a}$ distances in these bonds range from 2.687 (3) to 2.787 (2) \AA. The hydroxyl H atoms are ordered. A three-dimensional network of hydrogen-bond chains is formed which is 'decorated' with sets of cyclic hydrogen bonds and numerous finite hydrogen-bond patterns. This structure shows both similarities and differences with respect to the structures of the related molecules benzene-1,3,5-triacetic acid and benzene-1,3,5-trimethanol.

Comment

This report on $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}$-trimethyl-1, 3,5-benzenetrimethanol, (I), is one of a series on hydrogen bonding in aromatic organic solids and follows a study of the related substance benzene-1,3,5-triacetic acid (hereafter BTA) which was shown to have extensive interwoven hydrogen-bonding networks (Fitzgerald \& Gerkin, 1997). Structural comparisons with the closely related substance benzene-1,3,5-trimethanol (hereafter BTM) (Bell et al., 1996) are of particular interest.

(1)

